	х	У
1	0.8	2.8
2	1.2	2.2
3	1.4	3.1
4	1.7	3.4
5	1.9	4.5
6	2.2	4.1
7	2.5	3.7
8	2.9	3.5
9	3.3	4.9
10	3.7	4.9
11	4.3	4.6
12	4.5	7.5
13	5.3	6.4
14	5.9	7.4
15	6.6	7.4
16	7.4	8
17	8.2	8.1
18	8.8	11.1
19	9.1	9.1
20	9.7	11.8
21	10.5	10.9
22	10.9	12.2

- Step 1 Sort data based on the domain
- Step 2 Split data into 3 "evenly" distributed groups
- Step 3 Find the mean 'x' and mean 'y' for each group
- Step 4 Write a linear equation using the first and third mean ordered pair
- Step 5 Write a linear equation using the slope from the first and third group and the point from the middle ordered pair
- Step 6 Calculated an average y-intercept by doubling the first and adding the second
- Step 7 Use your average y-intercept to write your Line of Best Fit